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Abstract

In this paper we apply the method proposed in our previous paper [Int. J. Solids Struct. 40(13–14) (2003) 3293] to

quantitatively estimate the violation of Saint-Venant�s principle in the problem of flexural vibration of a two-dimen-

sional strip. A probabilistic approach is used to determine the relative magnitude of the penetrating stress state and the

results of computations are presented as a function of frequency. The results are not dependent on material properties

except for Poisson�s ratio. The numerical results given are appropriate for all isotropic materials with equal Lame�
coefficients. Our major conclusion is that over a wide range of frequencies, the maximum propagating stress is always

small compared with the maximum applied stress; hence Saint-Venant�s principle may be said to apply in this problem.

By considering applied loads with increasing spatial frequency content it was concluded that a smooth self-equilibrated

load will cause a larger penetrating stress than a more irregular one. Although initially this may seem counter-intuitive,

it results from the penetrating branch having the smoothest spatial distribution of all the branches of the solution to the

dynamic elasticity equations. An interesting outcome of our study is that the accuracy of engineering theories for

flexural vibrations is much higher than for longitudinal vibrations.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

For beams with a full cross-section, Barre� de Saint-Venant (1885) postulated that the stresses caused by

a static self-equilibrating load are localized at the vicinity of the beam end, and form a ‘‘boundary layer’’.

Neglecting the stress field caused by the self-equilibrating load reduces the study of the stress state away

from the end to just the study of a two-dimensional elasticity problem on the cross-section. A detailed
review of the subject was given in our previous paper, Berdichevsky and Foster (2003), together with a list

of references to previously published work. In the case of a dynamic load, Lamb (1916) showed that a

travelling wave is also excited, so that a self-equilibrated end load will cause some level of stress to penetrate

into the beam: Saint-Venant�s principle is violated. The above referenced paper proposed a method to

characterize the level of the penetrating stress state, with particular reference to the symmetric axial load.
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We used an explicit solution of the elasticity equations in the form of a series, each term of the series being a

partial solution; the first being the penetrating mode as constructed by Lamb (1916) and the remainder

being decaying modes similar to those found for a static load. Any given load could, in principle, be

constructed by the summation of these partial solutions multiplied by appropriate coefficients. Since the
individual solutions are non-orthogonal, this turns out to be a tedious, approximate process. An alternative

method to obtain a self-equilibrated load distribution using a finite number of partial solutions would be to

assign values to all the series coefficients except for the coefficient of the penetrating mode, which would be

determined by the requirement of zero resultant load. Moreover, since the self-equilibrated part of the end

load would be different for each specific engineering problem, we needed a method to model many different

types of spatial distributions. To accomplish this, the arbitrary coefficients for a particular analysis were

selected from independent Gaussian distributions with zero mean and unit variance. Effectively, we treat

the load as random, accept a probabilistic model for randomness and determine the probabilistic char-
acteristics of the penetrating stress state. It is worth emphasizing that the actual load is not random, and

that randomness only comes into play to model absence of our knowledge of the actual self-equilibrated

part of the load. One may say that the information on the self-equilibrated part of the load is given in

probabilistic terms, as a measure on the space of loads. In the paper referenced, this approach was used to

study the errors of one-dimensional strip theories caused by the violation of Saint-Venant�s principle in the

case of longitudinal vibrations of elastic strips.

Herein, we apply this method to the problem of flexural vibrations of a semi-infinite elastic strip. We

study the probabilistic characteristics of the penetrating solution. Our major conclusion is that over a wide
range of frequencies, the maximum propagating stress is small compared with the maximum applied stress.

Saint-Venant�s principle may be said to apply in this problem, until the frequency approaches a critical high

level. Below this frequency of vibration, the error involved is considerably smaller for flexural vibrations

than it is for longitudinal vibrations.

The material is organized as follows. In the next section we give a necessary summary of the Lamb

partial solutions for the semi-infinite strip, and construct the series expansion. In Section 3 the probabilistic

model is introduced and the method of determining the penetrating stress state is outlined. The results of

computations are presented in Section 4. The conclusions drawn from this study are given in Section 5, and
an abbreviated list of references in section six (but see our previous paper for a more complete list of

references).
2. Vibrations of a semi-infinite strip

Consider a semi-infinite strip of homogeneous isotropic material with Lame� elastic constants k and l
and density q. It occupies the region xP 0, �h6 y6 h, unbounded in the direction z. The faces y ¼ h, and
y ¼ �h are free of traction; the end x ¼ 0 is subjected to a load, which changes harmonically with time t at a
frequency x. The load causes normal stresses rxx, and ryy and shear stresses rxy with displacements u and v
in the ðx; yÞ-plane. The dynamic behavior is governed by

the momentum equation
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the free boundary conditions at the faces of the strip
ry

rx

rx
y ¼ 0; rxy ¼ 0 at y ¼ �h ð2:3Þ

and the boundary conditions at the strip edge
xðy; tÞ ¼ fxxðyÞ cosxt þ gxxðyÞ sinxt ð2:4Þ

yðy; tÞ ¼ fxyðyÞ cosxt þ gxyðyÞ sinxt ð2:5Þ
The functions fxxðyÞ, gxxðyÞ, fxyðyÞ, and gxyðyÞ are assumed to be given. There is also a condition that there

are no forces at infinity, which we formulate explicitly later.

Flexural vibrations correspond to functions vðx; y; tÞ and rxyðx; y; tÞ even in y and uðx; y; tÞ, rxxðx; y; tÞ and
ryyðx; y; tÞ odd in y. Thus, fxxðyÞ and gxxðyÞ are odd functions of y while fxyðyÞ, and gxyðyÞ are even functions.

The Lamb partial solutions are those solutions of 2.1 and 2.2 such that each unknown function has the
form of a running wave; a function of y multiplied by eiðkx�xtÞ. It is convenient to write the solutions in

dimensionless form by introducing dimensionless stresses r0
xx, r

0
xy , and r0

yy , coordinates x
0, y 0, displacements

u0, v0, frequency X, time t0 and wave number k0
r0
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rxx

l
; r0

xy ¼
rxy

l
; r0

yy ¼
ryy
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h
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ð2:6Þ

X2 ¼ qhx2

l
; t0 ¼ t

h

ffiffiffi
l
q

r
and k0 ¼ k

h
ð2:7Þ
In what follows we omit the primes.

The running wave solutions exist only for k and X linked by the dispersion equation
tanh b
tanh a

¼ ðk2 þ b2Þ2

4k2ab
ð2:8Þ
where
a2 ¼ k2 � 1� 2m
2� 2m

X2; b2 ¼ k2 � X2 ð2:9Þ
Note that the right-hand side of the dispersion equation for the case of flexural vibrations is the inverse of

that for longitudinal vibrations. The corresponding functions of y are
uðy; kÞ ¼ sinh ay � ðb2 þ k2Þ sinh a sinh by
2k2 sinh b

vðy; kÞ ¼ 2iak cosh a cosh by

ðb2 þ k2Þ cosh b
� ia

k
cosh ay

rxxðy; kÞ ¼
iðk2 � b2 þ 2a2Þ sinh ay

k
� i

ðb2 þ k2Þ sinh a sinh by
k sinh b

ryyðy; kÞ ¼ �iðk2 þ b2Þ sinh ay sinh b� sinh a sinh by
k sinh b

� �

rxyðy; kÞ ¼ �2a
cosh a cosh by � cosh ay cosh b

cosh b

ð2:10Þ
We consider X as a given parameter and determine the wave numbers k as functions of the frequency X
from the dispersion equation (2.8). The dispersion equation has one real root (designated as branch zero)

but many complex roots. The first four branches are plotted in Fig. 1.
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Fig. 1. Wave number k vs. frequency X0 for branches 0–3.
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For consistency with other authors, we plot the dimensionless frequency X0 ¼ hx
ffiffiffiffiffiffiffiffi
q

kþ2l

q
.

The branches shown correspond to the non-growing (away from the end) solutions, related to ImkP 0.
When computing quantities for branches with Rek < 0 we replace k by its negative conjugate ��k. We will

number all the branches for small X, attaching index 0 to the first penetrating branch, for which Imk ¼ 0 at

all frequencies. For frequencies X0 6 0:9068 branch 1 has pure imaginary k. The values of Imk which start

from zero at X0 ¼ 0, remain small as the frequency increases and return to zero at X0 ¼ 0:9068. Above this

frequency, branch 1, like branch 0, has Imk ¼ 0 and is a penetrating branch. For the purpose of deter-

mining the possible magnitude of the dynamic penetrating stress state, branches zero and one are both

treated as penetrating at all frequencies. Indices 2, 3, . . . are given to branches with increasing k for

RekP 0, and indices �2; �3; . . . to the corresponding branches with Imk6 0. For the ath branch, ka is a
function of X. According to (2.9), a and b are also functions of X. For definiteness when determining a and
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Fig. 2. Real part of normalized axial stress vs. distance across strip, for first five branches.
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Fig. 3. Imaginary part of normalized axial stress vs. distance across strip, for first five branches.
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b from (2.9) by the relations a2 ¼ k2 � 1�2m
2�2m X

2, b2 ¼ k2 � X2, we choose the branch of the square root, which

obeys the rule að��k;XÞ ¼ �aðk;XÞ, bð��k;XÞ ¼ �bðk;XÞ.
Except for the special cases of branches zero and one, the ath branch has two real solutions, which are

the real and imaginary parts (denoted by prime and double prime respectively) of the time dependent

physical quantities. For the axial displacement, for example, these are denoted by u0ðx; y; tÞ and u00ðx; y; tÞ.
They are derived from the fundamental solution (2.10) and the equation
uðx; y; t; kaÞ ¼ uðy; kaÞeiðkax�XtÞ ¼ u0aðx; y; tÞ þ iu00aðx; y; tÞ ð2:11Þ
Similarly
vðx; y; t; kaÞ ¼ vðy; kaÞeiðkax�XtÞ ¼ v0aðx; y; tÞ þ iv00aðx; y; tÞ
rxxðx; y; t; kaÞ ¼ rxxðy; kaÞeiðkax�XtÞ ¼ r0

xx;aðx; y; tÞ þ ir00
xx;aðx; y; tÞ

ryyðx; y; t; kaÞ ¼ ryyðy; kaÞeiðkax�XtÞ ¼ r0
yy;aðx; y; tÞ þ ir00

yy;aðx; y; tÞ
rxyðx; y; t; kaÞ ¼ rxyðy; kaÞeiðkax�XtÞ ¼ r0

xy;aðx; y; tÞ þ ir00
xy;aðx; y; tÞ

ð2:12Þ
From (2.11), the axial displacement components are
u0aðx; y; tÞ ¼ ðu0ðy; kaÞ cosðk0ax� XtÞ � u00ðy; kaÞ sinðk0ax� XtÞÞe�k00a x

u00aðx; y; tÞ ¼ ðu0ðy; kaÞ sinðk0ax� XtÞ þ u00ðy; kaÞ cosðk0ax� XtÞÞe�k00a x
ð2:13Þ
Similar formulas for the other physical quantities follow from (2.11). For the branches associated with the

conjugate roots of the dispersion equation ��k, we have uð��k;XÞ ¼ �uðk;XÞ, vð��k;XÞ ¼ �vðk;XÞ. Therefore
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Fig. 4. Real part of normalized shear stress vs. distance across strip, for first five branches.
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u0�aðx; y; tÞ ¼ ðu0ðy; kaÞ cosðk0axþ XtÞ � u00ðy; kaÞ sinðk0axþ XtÞÞe�k00a x

u00�aðx; y; tÞ ¼ ð�u0ðy; kaÞ sinðk0axþ XtÞ � u00ðy; kaÞ cosðk0axþ XtÞÞe�k00a x
ð2:14Þ
Again, similar formulas for the other physical quantities follow from (2.11). So, we have, for each branch

with complex values for k, four independent real solutions.
For branch zero, there are two penetrating branches with real wave numbers k and �k. They correspond

to the waves running to the right and left, respectively. We assume that here are no waves coming from

infinity. Thus only the penetrating branch with positive k should be taken into account. It generates two real

independent solutions. It is easy to see that for small values ofX, a is real while b is pure imaginary. Thus, for

the penetrating branch zero u00ðy; k0Þ ¼ v0ðy; k0Þ ¼ r0
xxðy; k0Þ ¼ r0

yyðy; k0Þ ¼ r00
xyðy; k0Þ ¼ 0 and simlarly for the

lightly damped branch one, we find u0ðy; k1Þ ¼ v0ðy; k1Þ ¼ r0
xxðy; k1Þ ¼ r0

yyðy; k1Þ ¼ r0
xyðy; k1Þ ¼ 0.

The two real independent solutions for the propagating longitudinal displacements are
u00ðx; y; tÞ ¼ u0ðy; k0Þ cosðk00x� XtÞ
u000ðx; y; tÞ ¼ u0ðy; k0Þ sinðk00x� XtÞ

ð2:15Þ
For each value of X, we may seek the solution of the boundary value problem in the form of series with

respect to the obtained partial solutions. For example, for the axial component of displacements one can

write
uðx; y; tÞ ¼ A0u0ðy; k0Þ cosðk00x� XtÞ þ B0u0ðy; k0Þ sinðk00x� XtÞ þ
X1
a¼1

Aau0aðx; y; tÞ þ Bau00aðx; y; tÞ

þ
X1
�a¼1

Cau0�aðx; y; tÞ þ Dau00�aðx; y; tÞ ð2:16Þ



D.J. Foster, V. Berdichevsky / International Journal of Solids and Structures 41 (2004) 2551–2562 2557
At the edge x ¼ 0, using (2.13)–(2.15), and noting that since u0ðy; k1Þ ¼ 0 we can make the change of

notation A1 for A1 � C1 and B1 for B1 � D1, this becomes
uðx; y; tÞ ¼ A0u0ðy; k0Þ cosXt � B0u0ðy; k0Þ sinXt þ A1u00ðy; k1Þ sinXt þ B1u00ðy; k1Þ cosXt

þ
X1
a¼2

ððAa þ CaÞu0ðy; kaÞ þ ðBa � DaÞu00ðy; kaÞÞ cosXt

þ
X1
a¼2

ððAa � CaÞu00ðy; kaÞ � ðBa þ DaÞu0ðy; kaÞÞ sinXt ð2:17Þ
Similar formulas and expansions hold for the other fields.

The coefficients A0, B0, A1, B1, Aa, Ba, Ca, Da should be found from the boundary conditions (2.4) and

(2.5). Let us write down these conditions explicitly in terms of the unknown coefficients
B0r
00
xxðy; k0Þ þ B1r

00
xxðy; k1Þ þ

X1
a¼2

ððAa þ CaÞr0
xxðy; kaÞ þ ðBa � DaÞr00

xxðy; kaÞÞ ¼ fxxðyÞ

A0r
00
xxðy; k0Þ þ A1r

00
xxðy; k1Þ þ

X1
a¼2

ððAa � CaÞr00
xxðy; kaÞ � ðBa þ DaÞr0

xxðy; kaÞÞ ¼ gxxðyÞ

A0r
0
xyðy; k0Þ þ B1r

00
xyðy; k1Þ þ

X1
a¼2

ððAa þ CaÞr0
xyðy; kaÞ þ ðBa � DaÞr00

xyðy; kaÞÞ ¼ fxyðyÞ

� B0r
0
xyðy; k0Þ þ A1r

00
xyðy; k1Þ þ

X1
a¼2

ððAa � CaÞr00
xyðy; kaÞ � ðBa þ DaÞr0

xyðy; kaÞÞ ¼ gxyðyÞ

ð2:18Þ
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Fig. 5. Imaginary part of normalized shear stress vs. distance across strip, for first five branches.
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The penetrating stress for the given applied load may be computed from (2.18) by determining the coef-

ficients A0 and B0. The basic functions in this expansion, r0
xxðy; kaÞ, r00

xxðy; kaÞ, r0
xyðy; kaÞ and r00

xyðy; kaÞ look, to
some extent, similar to the basic functions of a Fourier series. They are shown for each of the first five

branches, in Figs. 2–5, for a frequency X0 ¼ 0:3. At this frequency, the associated values of k are

3. Probabilistic model

We intend to find from the system of equation (2.18) the coefficients A0 and B0 that specify the magnitude
of the penetrating stress state. We assume that the load is self-equilibrated. Due to the antisymmetric

properties of the problem, for a self-equilibrated shear load and moment of the (inherently self-equili-

brated) axial load, functions fxxðyÞ, gxxðyÞ, fxyðyÞ and gxyðyÞ must obey the conditions

Branch Real k Imaginary k

0 0.875 0.0

1 0.0 0.595

2 1.387 3.724

3 1.677 6.937
4 1.992 13.271
Z 1

�1

fxxðyÞy dy ¼
Z 1

�1

gxxðyÞy dy ¼
Z 1

�1

fxyðyÞdy ¼
Z 1

�1

gxyðyÞdy ¼ 0 ð3:1Þ
Absence of knowledge of fxxðyÞ, gxxðyÞ, fxyðyÞ and gxyðyÞ corresponds to the absence of knowledge of the

coefficients Aa, Ba, Ca and Da. Therefore, instead of prescribing a probabilistic model for fxxðyÞ, gxxðyÞ, fxyðyÞ
and gxyðyÞ, one can give a probabilistic model for the coefficients Aa, Ba, Ca and Da. We assume in what

follows that these coefficients are independent Gaussian random variables with zero mean and unit vari-

ances. Then the coefficients A0, B0, A1 and B1 determined from (3.1) as linear functions of Aa, Ba, Ca and Da

are also Gaussian variables with zero mean.

The degree to which Saint-Venant�s principle is violated may be characterized by the ratio h of the

maximum penetrating stress to the maximum value of the stress at the loaded end
h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
0 þ B2

0

p
max

y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r00
xxðy; k0Þ

2 þ 2r0
xyðy; k0Þ

2 þ r00
yyðy; k0Þ

2
q

max
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fxxðyÞ2 þ fxxðyÞ2 þ 2fxyðyÞ2 þ 2gxyðyÞ2 þ fyyðyÞ2 þ gyyðyÞ2

q ð3:2Þ
where fyyðyÞ cosXt þ gyyðyÞ sinXt is the yy-component of the stress tensor at x ¼ 0. If the self-equilibrated

load at the beam end is of the same order as the non-equilibrated one then h may serve as a measure of the

error induced by using Saint-Venant�s principle in dynamical problems.
4. Results

Ratio h is a random variable. Its properties were determined numerically by running a Monte-Carlo

analysis, where for each of 250 calculation the coefficients Aa, Ba, Ca and Da were randomly selected from a

set of Gaussian variables with zero mean and variance of unity. Initially, calculations were made for the two
cases of including either three or six branches. We observed that, as in the case of longitudinal vibrations,
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the beta distribution provides a good description of the histogram of the numerical results. The beta dis-

tribution has a probability density given by
pðxÞ ¼
1

Bða;bÞ x
a�1ð1� xÞb�1

06 x6 1

0 otherwise

� �
; Bða; bÞ ¼ CðaÞCðbÞ

Cðaþ bÞ ð4:1Þ
For a random variable defined on some finite interval ½0; d� the beta distribution should be scaled

accordingly. The probability density function pðhÞ of the ratio h is shown in Fig. 6 for the values of fre-

quency X0 ¼ 0:3, 0.5, 0.7 and 0.9 (three branches beyond the penetrating one were involved in these

computations). In this figure we plot the beta distributions fitted to the histograms of the computed ratios.

The computed values for the parameters a and b were nearly constant across all frequencies where

X0 6 0:9, with 1:8 < a < 2:5 and 3:4 < b < 4:5. The increase in the average value �h is mostly due to the
increase in the parameter d and is shown as a function of frequency in Fig. 7. We see from Fig. 7 that the

Saint-Venant principle produces average errors less than 1.5% if the frequency X0 6 0:9. Note that this is an

average estimate: in fact, errors may be as large as 3% for a smooth load distribution, as follows from the

probability distributions shown in Fig. 6.

Integrating the probability density function pðhÞ up to a certain given value H, one determines the

probability P ðHÞ that error H does occur. Subtracting this value from unity gives the probability

QðHÞ ¼ 1� P ðHÞ that the error exceeds the certain value H. A graph of QðHÞ is given in Fig. 8 for the

frequencies X0 ¼ 0:1, 0.3, 0.5, 0.7 and 0.9. From these graphs we see that the probability of the error being
greater than 1.5% (i.e. H ¼ 0:015) was 0.4 for a frequency X0 ¼ 0:9 but is near zero for X0 6 0:7.
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From the numerical simulation we found that the presence of the higher harmonics of the self-equili-
brated load distribution, associated with higher mode numbers, caused a reduction of the ratio h. To obtain

information on the effect of the number of branches, computations of the ratio for the case of Aa, Ba, Ca and

Da being Gaussian variables with zero mean, for 26 a6 11 (i.e. from 3 to 12 branches including the pe-

netrating branches) were made. The results of the calculations of the probability density function for the

inclusion of 3, 4, 5, 6 and 7 branches is given in Fig. 9 for a frequency X0 ¼ 0:5. The corresponding plot of

the mean value of the ratio is given in Fig. 10; it shows that h decreases as the number of branches included

increases from 3 to 12. From this, it was expected that a smooth self-equilibrated load would cause a larger

penetrating stress than a highly irregular one.
5. Conclusions

A probabilistic approach was used to determine the relative magnitude of the penetrating stress state

resulting from dynamic self-equilibrating anti-symmetric loads, as functions of the frequency of loading and

the distribution shape. The computing power of readily available digital computers make direct application

of �Monte-Carlo� solution methods a practical way to use a probabilistic approach for loosely defined

loading conditions. The results are not dependent on material properties except for Poisson�s ratio. The

numerical results given are appropriate for all isotropic materials with equal Lame� coefficients. Over a wide

range of frequencies, the maximum propagating stress is always small compared with the maximum applied
stress. Saint-Venant�s principle may be said to apply in this problem, until the frequency approaches a
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critical high level. By considering applied loads with increasing spatial frequency content it was concluded

that a smooth self-equilibrated load will cause a larger penetrating stress than a more irregular one. Al-

though initially this may seem counter-intuitive, it results from the penetrating branch having the

smoothest spatial distribution of all the branches of the solution to the dynamic elasticity equations. An

interesting outcome of our study is that the accuracy of engineering theories for flexural vibrations is much

higher than for longitudinal vibrations.
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